BESPA BT is a next-generation, high-performance barium titanate newly developed by us. Barium titanate has been conventionally used as a major raw material for ceramic capacitors, but the conventional barium titanate does not allow for much smaller and higher-quality capacitors. Thus new products that meet the demands of the times have needed to be developed.

Then, according to a concept completely different from the conventional method of manufacturing barium titanate, we have developed a novel crystallization process, and are conducting the research and development of a high-performance barium titanate (BESPA BT) matching production lines of users.

BESPA BT can make one layer of laminated chip capacitors be thinner, expanding the application of ceramic capacitors.

Fig.1 SEM photograph of BESPA BT.

Fig.2 Schematic of a ceramic capacitor.
Important notes
* No republication without permission.
* The above information is subject to change.
* The information contained herein is not intended as a guarantee of product performance or quality etc.
* Safety precautions are required when handling the product.

NOTICE:
* No part of contents on this Internet Web site may be reproduced in any form or by any means including information storage and retrieval systems without permission from Nippon Chemical Industrial Co., Ltd.
* Nippon Chemical Industrial Co., Ltd. makes no commitment to updating or correcting any information that is provided on this Web site.
* Though the information and statements on the Web site are believed to be reliable, Nippon Chemical Industrial Co., Ltd. makes no representations or warranties as to the completeness or accuracy of any of this product information.
* All the products need to be handled with care to ensure safety.

© 2011 Nippon Chemical Industrial Co., LTD. All Rights Reserved.
BESPA® BT [Oxalate method barium titanate]

CAS No. 12047-27-7

BESPA® BT is barium titanate (BaTiO$_3$) synthesized by the oxalate method. Barium titanate, which has a high dielectric constant, has long been used as a material in capacitors and, in particular, as a dielectric material in multi-layer ceramic capacitors (MLCCs). As MLCCs become smaller, thinner, and of higher capacity, there is a growing demand for the main raw material—barium titanate particles—to be finer, and Nippon Chemical Industrial supplies barium titanate products that meet this demand. We also supply a large particle type, with a diameter of 2.0 µm or greater.

Special characteristics of the oxalate method:
(1) High stability of Ba/Ti mol ratio
(2) High-purity
(3) Narrow Particle size distribution

<table>
<thead>
<tr>
<th>Table 1</th>
<th>BESPA® BT characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (µm)</td>
<td>0.3</td>
</tr>
<tr>
<td>Specific surface area (m2/g)</td>
<td>5</td>
</tr>
<tr>
<td>Impurities (ppm)</td>
<td>Fe$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>Na$_2$O</td>
</tr>
<tr>
<td></td>
<td>MgO</td>
</tr>
</tbody>
</table>

Fig.1 SEM photograph of BESPA BT.
Applications

Dielectric materials for MLCCs
Materials for capacitors
Dielectric fillers
Materials for inorganic EL insulating layers
Additives, etc.

NOTICE:
* No part of contents on this Internet Web site may be reproduced in any form or by any means including information storage and retrieval systems without permission from Nippon Chemical Industrial Co., Ltd.
* Nippon Chemical Industrial Co., Ltd. makes no commitment to updating or correcting any information that is provided on this Web site.
* Though the information and statements on the Web site are believed to be reliable, Nippon Chemical Industrial Co., Ltd. makes no representations or warranties as to the completeness or accuracy of any of this product information.
* All the products need to be handled with care to ensure safety.

© 2011 Nippon Chemical Industrial Co., LTD. All Rights Reserved.
BESPA® AKBT [Alkoxide method barium titanate]

CAS No. 12047-27-7

BESPA® AKBT is barium titanate (BaTiO$_3$) synthesized by the alkoxide method. Using the alkoxide method, barium titanate particles with different diameters can be synthesized depending on the reaction conditions. The synthesized particles are spherical, with a very sharp particle distribution. Taking advantage of this particle morphology, BESPA® AKBT is used in a variety of applications requiring high dielectric materials.

Table 1 BESPA® AKBT characteristics

<table>
<thead>
<tr>
<th>Grade</th>
<th>AKBT-S</th>
<th>AKBT-M</th>
<th>AKBT-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size (µm)</td>
<td>0.15</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Specific surface area (m²/g)</td>
<td>12.5</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>Impurities(ppm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>20 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>10 or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>10 or less</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.1 SEM photograph of BESPA AKBT.

Applications
Materials for capacitors
Filler materials
Additives
NOTICE:
* No part of contents on this Internet Web site may be reproduced in any form or by any means including information storage and retrieval systems without permission from Nippon Chemical Industrial Co., Ltd.
* Nippon Chemical Industrial Co., Ltd. makes no commitment to updating or correcting any information that is provided on this Web site.
* Though the information and statements on the Web site are believed to be reliable, Nippon Chemical Industrial Co., Ltd. makes no representations or warranties as to the completeness or accuracy of any of this product information.
* All the products need to be handled with care to ensure safety.

© 2011 Nippon Chemical Industrial Co., LTD. All Rights Reserved.